Abstract

Soil radon (222Rn) has been monitored since August 2013 at three different soil depths on a campus forest of Fukushima University in Japan, where a large amount of fallout nuclides were released by the accident of Fukushima Daiichi Nuclear Power Plant in March 2011. The primary purpose of this study is to evaluate 222Rn activity level, variability and factors controlling 222Rn concentration in soil air using data obtained from August to December 2013. Time series of 222Rn activity concentration showed depth-dependent variability with an equilibrium value (222Rneq) during this observation period; 7.5, 14 and 23 kBq m−3 at 0.3, 0.6 and 1.0 m in depth, respectively. Two typhoons passing over the site had a great influence on soil radon level, which was practically used for evaluating effective diffusion coefficient of 222Rn. Transport mechanism of 222Rn in soil air was considered to be diffusion-controlled with data sets on changing 222Rn concentration with time in selected cases that showed decreasing (or increasing) 222Rn concentration with time at every depth. Important factors affecting soil 222Rn variability are meteorological parameters, low-pressure front passing over the site, and subsequent precipitation. Time lags of decreasing 222Rn concentration at different depths after rain indicate a certain relationship of 222Rn level with moving water (and water vapor) in soil. The findings obtained in this study are important to evaluate the fate of fallout nuclides (radiocesium) in contaminated forest sites using soil radon as a tracer of moving soil air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.