Abstract
Optimization of land management and agricultural practices require precise classification of soil properties. This study presents a method to fine-tune deep neural network (DNN) hyperparameters for multiclass classification of soil properties using genetic algorithms (GAs) with knowledge-based generation of hyperparameters. The focus is on classifying soil attributes, including nutrient availability (0.78 ± 0.11), nutrient retention capacity (0.86 ± 0.05), rooting conditions (0.85 ± 0.07), oxygen availability to roots (0.84 ± 0.05), excess salts (0.96 ± 0.02), toxicity (0.96 ± 0.01), and soil workability (0.84 ± 0.09), with these accuracies representing the results from classification with variations from cross-validation. A dataset from the USA, which includes land-use distribution, aspect distribution, slope distribution, and climate data for each plot, is utilized. A GA is applied to explore a wide range of hyperparameters, such as the number of layers, neurons per layer, activation functions, optimizers, learning rates, and loss functions. Additionally, ensemble methods such as random forest and gradient boosting machines were employed, demonstrating comparable accuracy to the DNN approach. This research contributes to the advancement of precision agriculture by providing a robust machine learning (ML) framework for accurate soil property classification. By enabling more informed and efficient land management decisions, it promotes sustainable agricultural practices that optimize resource use and enhance soil health for long-term ecological balance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.