Abstract

Haloxylon ammodendron, a typical desert shrub with C4 pathway of photosynthesis, possessing a strong ability to adapt to an extreme drought environment, has a rapid growth rate in sandy lands and is widely used in sand-fixing shelter-forest systems in oasis-desert ecotones. To assess the effects of H. ammodendron plantation on the soil, we measured soil properties and herbaceous characteristics along a nearly 40-year chronosequence after H. ammodendron was planted in shifting sand dunes in an oasis-desert ecotone. Results showed that silt and clay fractions increased significantly in the topsoil. The accumulation rates of soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) were faster in the early stages (0–9 years) and slower in the late stages (9–39 years). The soil pH and electrical conductivity (EC) were higher than those in the non-vegetation dunes. Moreover, the soil properties in the topsoil (0–5 cm) showed larger variation scope than those in the deeper soil layers (5–20 cm). The significant relationships of the soil silt+clay content with the chemical properties mainly appeared in the topsoil. The wind erosion susceptibility of the soil, evaluated by erodible fraction (EF), decreased significantly with increasing H. ammodendron plantation age. Additionally, the annual pioneer herb, Agriophyllum squarrosum, was gradually substituted by the annual salt-tolerant herb, Bassia dasyphylla, with increasing plantation age. These results showed beneficial effects of H. ammodendron plantation on improving soil conditions. However, the dynamics of the herbaceous species also reminded us that the long-term effects of H. ammodendron plantation, especially on changes in vegetation composition, still need further evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call