Abstract

Soil productivity is strongly influenced by the activities of microbial communities. However, it is not well understood how community structure, including its richness, mass, and composition, influences soil functions. We investigated the relationships between soil productivity and microbial communities in unfertilized arable soils extending over 1000 km in eastern Japan. Soil properties, including C turnover rate, N mineralization rate, microbial C, and various soil chemical properties, were measured. Soil bacterial and fungal communities were analyzed by Illumina’s MiSeq using 16S rRNA and ITS regions. In addition, root microbial communities from maize grown in each soil were also investigated. Soil bacterial communities shared many operational taxonomic units (OTUs) among farms. An ordination plot based on correspondence analysis revealed convergent distribution of soil bacterial communities across the farms, which seemed to be a result of similar agricultural management practices. Although fungal communities showed lower richness and a lower proportion of shared OTUs than bacterial communities, community structure between the farms tended to be convergent. On the other hand, root communities had lower richness and a higher abundance of specific taxa than the soil communities. Two soil functions, decomposition activity and soil productivity, were extracted by principal component analysis (PCA) based on eight soil properties. Soil productivity correlated with N mineralization rate, P2O5, and maize growth, but not with decomposition activity, which is characterized by C turnover rate, soil organic C, and microbial mass. Soil productivity showed a significant association with community composition, but not with richness and mass of soil microbial communities. Soil productivity also correlated with the abundance of several specific taxa, both in bacteria and fungi. Root communities did not show any clear correlations with soil productivity. These results demonstrate that community composition and abundance of soil microbial communities play important roles in determining soil productivity.

Highlights

  • IntroductionThe diversity and composition of these communities vary largely between different environments

  • A 0.4 g soil sample included an average of 2785 bacterial operational taxonomic units (OTUs), which belonged to 150 different taxa at the order level

  • The present study revealed extremely high diversity and a disproportionate contribution of a small number of phylotypes to the total abundance in soil bacterial and fungal communities

Read more

Summary

Introduction

The diversity and composition of these communities vary largely between different environments. The structure of microbial communities can be influenced by soil pH [1,2,3,4,5,6], soil type [7,8], electrical conductivity (EC).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call