Abstract
For the first time, different pollution indices and a receptor model have been used to quantify eco-environmental and health risk assessments as well as identify the sources of potentially toxic elements in soil along the Barapukuria Coal Mine (BCM). Individual indices include enrichment and contamination factors showing the soil samples are moderately to highly contaminated by arsenic, cobalt, chromium, copper, lead, and zinc and heavily contaminated by sulfur. According to the geo-accumulation index, there is significant pollution with arsenic (1.24 ± 0.38), lead (1.49 ± 0.58), cobalt (1.49 ± 0.58), and sulfur (1.63 ± 0.38). Modified hazard quotient and ecological risk factor values also suggest low to moderate environmental risk hazards from the same elements. The nemerow pollution index, pollution load index, nemerow risk index, ecological risk index, and toxic risk index of soil range from 1.65 to 3.03, 0.82–1.23, 11–26, 77–165, and 6.82–11.76 suggest low toxic risk and moderate pollution, among other synergistic indices. Health risk assessment indicates that iron poses lower cancer risk for children than adults, while both face unacceptable cancer risks from inhaling chromium, cobalt, or arsenic. Principal component and phylogenetic cluster analysis extracted by the multiple linear regression with the absolute principal component score (APCS-MLR) model refer to the fact that manganese, iron, titanium, and nickel have originated from geogenic sources, while coal mine effluents enrich elements like arsenic, chromium, zinc, lead, uranium, sulfur, thorium, and zinc and phosphorous sourced from agriculture. In addition, geogenic and anthropogenic sources, including mine and agriculture activities, could potentially pollute the soil and ecosystem. The findings are crucial for regional and national planners in devising strategies to mitigate potentially toxic element pollution in soil along coal mine areas.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.