Abstract
Pipelines buried along potentially unstable slopes are often monitored because soil movements can induce an evolution of the state of stress within the pipe that can eventually result in the loss of the serviceability of the system or even in its failure. In the present paper, the pipeline is discretised by means of a series of three-dimensional beam finite elements and the soil–pipeline interaction is reproduced by means of macroelements independent from each other, but characterized by a failure condition in which coupling among the different loading components is taken into account. The soil–pipeline interaction problem is formulated by accounting for the geometry of the slope, the soil and pipe mechanical properties, and the imposed soil displacement profile. A convenient piecewise linear formulation for the macroelement constitutive relationship is adopted and a large displacements scheme is also formulated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.