Abstract
Grasslands are a globally important use of land for food and fibre production, which often require the addition of phosphorus (P) fertiliser to maximise plant production. However, a large proportion of the added P can accumulate in pools of poorly available inorganic and organic P in the surface soil layer under grasslands. The aim of this study was to identify the chemical nature of the organic P in soils from a long-term fertiliser by grazing permanent pasture experiment that have received varying additions of phosphatic fertiliser (cumulative P input of 27, 169, 311, 513, 745 and 1035 kg P ha−1) over a period of 37 years. The design of the experiment uniquely provides insight into the response of soil organic P to the addition of fertiliser P on the decadal scale. On average, 46% of the added fertiliser P was recovered as total P in the 0–100 mm soil layer after 37 years of phosphate addition. The content of both inorganic and organic forms of soil P increased with the addition of fertiliser P. The accumulation of organic P increased linearly up to a cumulative P input of 745 kg P ha−1 and plateaued thereafter. The majority of organic P in all treatments was detected as a broad signal in the phosphomonoester region of solution 31P nuclear magnetic resonance (NMR) spectra; this also accounted for 79% of the accumulated organic P in fertilised soil. Our results indicate that accumulation of P in the organic portion as complex forms eventually reaches a new equilibrium where no net accumulation would be expected with further addition of phosphate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.