Abstract

Soil volumetric water contents, φ, at −33 kPa potential may vary with soil from 0.06 to 0.70. Because P diffusion depends on φ, most economic P fertilizer rates required for different soils may require adjusting according to their soil-water relationships. The objective of this study was, after experimentally verifying a mechanistic nutrient uptake model on a series of soils varying in θ at −33 kPa potential, to use the model to predict labile P levels needed for each of these soils to achieve equal P uptake by maize (Zae mays L.) and verify these predictions. Maize was grown in a pot experiment using four soils having θ of 0.13, 0.20, 0.26, and 0.40 at −33 kPa each at 0, 200, and 400 mg kg-1 of added P. When root parameters obtained experimentally were used, predicted P uptake with the uptake model agreed with observed P uptake, y=0.99x+9.08 (r2=0.98). When P uptake was plotted vs. soil solution P, Cli, the relation varied with soil. The higher the θ the lower the Cli needed for equal P uptake. A similar relation was found between P uptake and diffusible soil P, Csi. Differences between the two plots occurred because of differences among soils in buffer power, ΔCsi/ΔCli. The Csi vs. P added relation was used to calculate differences among soils in the Csi needed to obtain equal P uptake. The Csi values ranged from 1.3 to 4.0 mmol kg−1. The calculated values were used in a second pot experiments to verify the predictions. No significant difference (α=0.05) in P uptake occurred. The results of this research indicate that the mechanistic nutrient uptake model can be used to predict the degree of adjustments in Csi needed to obtain the most economic P fertilizer rates among soils varying in θ.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.