Abstract

We evaluated soil phosphorus (P) fractions, other soil characteristics, and rates of symbiotic N2 fixation across a substrate-age gradient in Hawaii that was dominated by the leguminous tree Acacia koa (koa). Patterns of soil P observed on this gradient were compared to those on a slightly wetter gradient dominated by the nonfixer Metrosideros polymorpha (ohia). Along both gradients, concentrations of primary-mineral P fell sharply between the young and intermediate-aged sites, while labile inorganic P declined most steeply between the intermediate-aged and old sites. The most marked difference between the two gradients was that total soil carbon (C), nitrogen (N), and P, as well as nonoccluded organic P, were more variable across the ohia gradient, increasing to the intermediate-aged sites, then declining sharply at the old site. On the koa gradient, specific nitrogenase activity, measured by the acetylene-reduction (AR) assay, decreased three- to eightfold between the young site and the intermediate-aged and old sites, respectively. Nodule biomass showed no clear pattern. N2 fixation rates, estimated by combining AR activity and nodule biomass measurements, were up to 8 kg N · ha−1 · y−1 at the young site and no more than 2 kg N · ha−1 · y−1 at the older sites, suggesting that koa may be a modest source of N in these Hawaiian forests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call