Abstract

The study of the role of soil organic carbon (SOC) in restoration of soil fertility and stability of soil microaggregates is of importance in soils that degrade rapidly. We studied 4 profiles in a Ultisol under secondary forest and cultivation to identify the SOC microaggregate-associated fractions and their roles in microaggregate stability. The soils are coarse-textured, deep, and low in soil nutrients and SOC, probably due to high rates of mineralisation. Microaggregate-associated SOC was also low with most of the SOC protected by the <63 µm fractions. Clay content was negatively correlated with <2, 63–2, and <63 µm associated SOC (r = –0.45*, –0.42*, –0.40*, respectively). Clay flocculation index and clay dispersion ratio were significantly correlated with <2 and 63–2 µm associated SOC, while water-stable aggregates <0.25 mm were negatively correlated with all SOC fractions determined. Principal component analysis revealed that SOC fractions associated with 2000–63 µm aggregate sizes were the SOC fractions that best explained the variance in aggregated silt + clay, indicating their contribution to microaggregate stability. This was attributed perhaps to the production of polysaccharides and materials released by microbial activities from this recently deposited or incompletely decomposed SOC. The other soil properties that in addition to SOC contributed to either dispersion or microaggregate stability of these soils were exchangeable Na+, Mg2+, and CEC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.