Abstract

IntroductionSoil is the major reservoir of organic carbon. There is a paucity of soil organic carbon (SOC) stock data of afroalpine and sub-afroalpine vegetation in Ethiopia. Hence, this study was conducted to estimate the SOC stock and correlate it with soil physicochemical properties in Abune Yosef afroalpine and sub-afroalpine vegetation. Systematic sampling was employed to collect soil samples from upper 30 cm. Dry bulk density soil pH (1:2.5 water); organic carbon (Walkley and Black), and total nitrogen (Kjeldahl) were the methods used for soil analysis. Pearson correlation and linear regression analysis were performed in SPSS 24 statistical software.ResultsThe SOC stock of the study area was found to be 79.57 t C ha−1. Soil organic carbon stock showed statistically significant positive correlation with vegetation type (r = 0.522, p < 0.01), bulk density (r = 0.62, p < 0.01), total nitrogen (r = 0.41, p < 0.01), and altitude (r = 0.468, p < 0.01) and negative correlation with slope (r = − 0.298, p < 0.05). The present study revealed similar soil organic carbon stock (SOCS) with the Intergovernmental Panel on Climate Change (IPCC) default estimate for similar regions. Positive correlation of SOCS and altitude could be resulted from the variations in anthropogenic disturbances, temperature, and precipitation vegetation types. The negative correlation between SOCS and slope is the result from the predictably higher soil erosion at steeper slopes. Temporal livestock trampling increased the bulk density but never affected the SOCS to decline. Aspect did not show any significant relationship with SOCS due to either the under surveying of all aspects or similar solar radiation found in the study area. Moreover, gazing, aspect, and soil pH did not show statistically significant impact on SOCS.ConclusionThe SOCS of Abune Yosef afroalpine and sub-afroalpine vegetation is similar to the IPCC default estimate for similar regions. This is a great contribution both to the global and local terrestrial carbon sink.

Highlights

  • Soil is the major reservoir of organic carbon

  • The soil organic carbon stock (SOCS) of Abune Yosef afroalpine and sub-afroalpine vegetation is similar to the Intergovernmental Panel on Climate Change (IPCC) default estimate for similar regions

  • The soil organic carbon (SOC) stock in 0 to100-cm soil layer of Ethiopia revealed that 6459 Tg of C (Henry et al 2009) which is more than 14% of the eastern Africa SOC stock

Read more

Summary

Introduction

There is a paucity of soil organic carbon (SOC) stock data of afroalpine and sub-afroalpine vegetation in Ethiopia. This study was conducted to estimate the SOC stock and correlate it with soil physicochemical properties in Abune Yosef afroalpine and sub-afroalpine vegetation. Soil organic carbon stock showed statistically significant positive correlation with vegetation type (r = 0.522, p < 0.01), bulk density (r = 0.62, p < 0.01), total nitrogen (r = 0.41, p < 0.01), and altitude (r = 0.468, p < 0.01) and negative correlation with slope (r = − 0.298, p < 0.05). The present study revealed similar soil organic carbon stock (SOCS) with the Intergovernmental Panel on Climate Change (IPCC) default estimate for similar regions. These are usually areas above the treeline, i.e., they are dominated by life forms different from the lower altitudes such as giant rosette plants, tussock, and mat-forming plants (Erica arboria, Lobelia rynchopetalum, Helichrysum species, Alchemilla species, Festuca abyssinica, Euryops pinifolius, Kniphofia foliosa, etc.) which are some of the characteristic species of this vegetation type

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call