Abstract

This paper compares predictions of soil organic carbon (SOC) using visible and near infrared reflectance (vis–NIR) hyperspectral proximal and remote sensing data. Soil samples were collected in the Narrabri region, dominated by Vertisols, in north western New South Wales (NSW), Australia. Vis–NIR spectra were collected over this region proximally with an AgriSpec portable spectrometer (350–2500 nm) and remotely from the Hyperion hyperspectral sensor onboard satellite (400–2500 nm). SOC contents were predicted by partial least-squares regression (PLSR) using both the proximal and remote sensing spectra. The spectral resolution of the proximal and remote sensing data did not affect prediction accuracy. However, predictions of SOC using the Hyperion spectra were less accurate than those of the Agrispec data resampled to similar resolution as the Hyperion spectra. Finally, the SOC map predicted using Hyperion data shows similarity with field observations. There is potential for the use of hyperspectral remote sensing for predictions of soil organic carbon. The use of these techniques will facilitate the implementation of digital soil mapping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.