Abstract
Soil organic carbon (SOC) is a crucial component of the global carbon cycle, playing a significant role in ecosystem health and carbon balance. In this study, we focused on assessing the surface SOC content in Shandong Province based on land use types, and explored its spatial distribution pattern and influencing factors. Machine learning methods including random forest (RF), extreme gradient boosting (XGBoost), and support vector machine (SVM) were employed to estimate the surface SOC content in Shandong Province using diverse data sources like sample data, remote sensing data, socio-economic data, soil texture data, topographic data, and meteorological data. The results revealed that the SOC content in Shandong Province was 8.78 g/kg, exhibiting significant variation across different regions. Comparing the model error and correlation coefficient, the XGBoost model showed the highest prediction accuracy, with a coefficient of determination (R²) of 0.7548, root mean square error (RMSE) of 7.6792, and relative percentage difference (RPD) of 1.1311. Elevation and Clay exhibited the highest explanatory power in clarifying the surface SOC content in Shandong Province, contributing 21.74% and 13.47%, respectively. The spatial distribution analysis revealed that SOC content was higher in forest-covered mountainous regions compared to cropland-covered plains and coastal areas. In conclusion, these findings offer valuable scientific insights for land use planning and SOC conservation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.