Abstract

AbstractThe cultivation of perennial instead of annual energy crops has received growing interest. Previous studies identified numerous beneficial effects of perennial energy crop (PEC) cultivation for the agricultural landscape such as promotion of agrobiodiversity, reduced requirements for agrochemicals and fertilizers as well as a large potential for carbon accumulation in soil. However, the mere presence of soil organic matter (SOM) accumulation gives no indication about the persistence of the SOM for example after a recultivation of the stands. Therefore, this study focused on SOM pools of different density fractions and soil microbial parameters. Six different PECs were tested against a typical benchmark system as feedstock for anaerobic digestion. The study has shown that all PEC species increased soil microbial activity and provided an insight how they sequester carbon in soil. Moreover, significant modifications in basic soil properties caused by plant growth were observed. For example, the cultivation of giant knotweed has lowered the soil pH by more than 0.5 pH units compared to the benchmark system. After 5 years of PEC cultivation, total soil organic carbon stocks were increased between 1,500 ± 400 and 4,500 ± 1,500 kg C ha‐1 for the upper 10 centimetres of soil. The distribution among different soil fractions showed species‐specific patterns. Tall wheatgrass and Virginia mallow showed particular high accumulation rates in the mineral‐associated SOM fraction which indicates long residence times of the SOM after a possible recultivation of the fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.