Abstract

Long-term conservation tillage and cropping intensity may alter the depth distribution of soil organic C and N. The objectives of this study were to investigate the impacts of conventional tillage (CT), no tillage (NT), and wheat cropping sequences on the depth distribution of dissolved organic C (DOC), soil organic C (SOC), and total N in a central Texas soil after 20 years. Soil was sampled for six depth intervals ranging from 0 to 105 cm. Conventional tillage consisted of disking, chiseling, ridging, and residue incorporation into soil, while residues remained on the soil surface for NT. The depth distribution of DOC was similar to SOC. Tillage impacts on DOC, SOC, and total N were primarily observed in surface soil (0–5 cm) under continuous wheat but also in subsurface soil depth intervals down to 55 cm for more intensive cropping sequences. On average, NT increased SOC, DOC, and total N compared to CT by 28, 18, and 33%, respectively. Soil organic C and total N were highest at 0–5 cm and decreased with depth to 30–55 cm, below which few tillage or cropping sequence effects were observed. The depth distribution of SOC and total N indicated treatment effects below levels of the maximum tillage depth, while intensive cropping increased SOC and total N for NT compared to CT to a greater depth than for monoculture wheat. High intensity cropping sequences, coupled with NT, resulted in the highest soil organic matter levels in subsurface soils, demonstrating the importance of subsurface C and N storage for potential mitigation of greenhouse gases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.