Abstract

Characterizing spatial variability of soil nutrients in relation to site properties, including climate, land use, landscape position and other variables, is important for understanding how ecosystems work and assessing the effects of future land use change on soil nutrients. In order to assess the effects of land use and landscape position on soil nutrients consisting of soil organic matter (SOM), total N (TN), total P (TP), available N (AN) and available P (AP), soil samples were collected in August and October 1998 and July 1999 from three transects in a small catchment on the loess plateau, China. The three transects consisted of typical land use structure from the top to foot of hillslope in the study area: fallow land – cropland – woodland – orchard (T1), fallow land – shrub land – fallow land – cropland – woodland – orchard (T2) and intercropping land – woodland (T3). Significant differences among land uses were found for SOM, TN and AN. Woodland, shrub land and grassland had the higher levels for them compared to fallow land and cropland. Use of soil deterioration index showed that soils deteriorated moderately (−17·05%) under orchard and seriously (ranging from −29·91% to −20·32%) under fallow land, cropland and intercropping land, while soils had no deterioration (−0·74%) under shrubland and (−0·69%) grassland. This study indicated that the cultivated hilly lands must be abandoned before a critical minimum SOM of 0·492%. Soil nutrient responses to landscape positions were variable depending on transect and the location of land use types. The highest levels in SOM, TN and AN were observed at middle slope position on T1, while they occurred at foot slope position on T3. However, an increasing trend from upper slope to foot slope for five nutrients were found on T2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call