Abstract

AbstractSoil solarization is used to manage nematodes, pathogens and weeds, but relatively few studies have examined solarization effects on soil mineral nutrients, soil properties and plant tissue nutrients. This study was designed to optimize the duration of solarization treatment for the management of soil and plant nutrients and crop biomass in an agroecosystem utilizing an organic nutrient source. The experiment was a split-plot with treatment duration as the main effect and solarization as the sub-effect. Solarization treatments of 2-, 4- and 6-week durations began on sequential dates and concluded in mid-August. Immediately post-treatment, okra (Hibiscus esculentus L.) seedlings were transplanted into subplots for tissue nutrient analysis. Freshly chopped cowpea [Vigna unguiculata (L.) Walp.] hay was applied to the soil surface directly around the okra seedlings as an organic nutrient source. Immediately following solarization treatment, concentrations of soil K and Mn were higher, while Cu and Zn concentrations were lower in solarized soils than in non-solarized soils. Soil pH was slightly lower in solarized plots. Concentrations of K, N, Mg and Mn in okra leaf tissue were higher in solarized plots than in non-solarized plots, but concentrations of P and Zn were lower in plants grown in solarized soil. Okra biomass was three and four times higher in the 4- and 6-week solarization treatments than in non-solarized treatments. Based on data from this experiment, 4- and 6-week durations of solarization were optimal for increasing crop biomass. The data indicate that solarization has significant effects on soil and plant nutrients. Results of the nutrient analyses suggest that the availability of nutrients from an organic source was not limited by solarization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call