Abstract

AbstractTemperate grasslands in arid and semiarid regions cover about 40% of the total land area in China. So far, only a few studies have studied the N transformations in these important ecosystems. In the present study, soil gross N transformation rates in Inner Mongolia temperate grasslands in China were determined using a 15N tracing experiment and combined with a literature synthesis to identify the soil N transformation characteristics and their controlling factors in a global perspective. Our results showed that the rates of gross N mineralization and immobilization NH4+ were significantly lower, while autotrophic nitrification rates were significantly higher in Chinese temperate grassland soils compared to other regions in the world. In particular, the primary mineral N consumption processes, i.e., immobilization of NO3− and NH4+, and dissimilatory nitrate reduction to ammonium, were on average much lower in temperate grassland soils in China, compared to other temperate grassland regions. The reduced heterotrophic activity and microbial growth associated with lower soil organic carbon and arid climate (e.g., mean annual precipitation) were identified as the main factors regulating soil N cycling in the studied regions in China. To restrict NO3− accumulation and associated high risks of N losses in these arid and semiarid ecosystems in China, it is important to develop the regimes of soil organic C and water management that promote the retention of N in these grassland ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.