Abstract

Knowledge of the pools and fluxes of C and N soil components is required to interpret ecosystem functioning and improve biogeochemical models. Two former grassland soils, where wheat or corn are currently growing, were studied by kinetic analysis of microbial biomass C and N changes, C and N mineralization rates, acid hydrolysis, and pyrolysis. Nearly twice as much C as N was mineralized during incubation. Modeling of changes during incubation demonstrated that two-pool first-order kinetics effectively described losses of microbial biomass C and N and concurrent N mineralization. Loss of microbial biomass N during incubation accounted for a significant portion of the N mineralized. Microbial biomass N content and soil N mineralization rates were strongly affected by soil type and soil management. Nitrification, but not N mineralization, was inhibited during the latter stages of incubation in one of the soils. We believe nitrifier populations had dropped below effective levels. Nonacid hydrolysable C was increased in both amount and mean residence time by cultivation and incubation. Hydrolysis removed a larger amount of N than incubation. Data after pyrolysis of soils, in argon at 550°C, closely reflected results for both C and N found after cultivation and incubation. This technique should be further investigated to identify the recalcitrant forms of C and N in soils. The dynamics of soil C and soil N, although related, are not identical; thus, management can be targeted to soil C or N cycling in ecosystem functioning or to soil organic matter dynamics in global change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.