Abstract
The spatiotemporal pattern of soil moisture is of great significance for the understanding of the water exchange between the land surface and the atmosphere. The two-satellite constellation of the Sentinel-1 mission provides C-band synthetic aperture radar (SAR) observations with high spatial and temporal resolutions, which are suitable for soil moisture monitoring. In this paper, we aim to assess the capability of pattern analysis based on the soil moisture retrieved from Sentinel-1 time-series data of Dahra in Senegal. The look-up table (LUT) method is used in the retrieval with the backscattering coefficients that are simulated by the advanced integrated equation Model (AIEM) for the soil layer and the Michigan microwave canopy scattering (MIMICS) model for the vegetation layer. The temporal trend of Sentinel-1A soil moisture is evaluated by the ground measurements from the site at Dahra, with an unbiased root-mean-squared deviation (ubRMSD) of 0.053 m3/m3, a mean average deviation (MAD) of 0.034 m3/m3, and an R value of 0.62. The spatial variation is also compared with the existing microwave products at a coarse scale, which confirms the reliability of the Sentinel-1A soil moisture. The spatiotemporal patterns are analyzed by empirical orthogonal functions (EOF), and the geophysical factors that are affecting soil moisture are discussed. The first four EOFs of soil moisture explain 77.2% of the variance in total and the primary EOF explains 66.2%, which shows the dominant pattern at the study site. Soil texture and the normalized difference vegetation index are more closely correlated with the primary pattern than the topography and temperature in the study area. The investigation confirms the potential for soil moisture retrieval and spatiotemporal pattern analysis using Sentinel-1 images.
Highlights
Soil moisture is a key variable of the energy and water cycle in the ecological system; it has great significances in drought monitoring, meteorology, hydrology, and other application fields [1]
The wet and dry season in our study site can be clearly identified by the precipitation and the in situ soil moisture: high values occur from July to November and low values occur from December to June
The look-up table (LUT) method was used for the retrieval, with the backscattering coefficients being simulated based on the MIMICs and the advanced integrated equation Model (AIEM)
Summary
Soil moisture is a key variable of the energy and water cycle in the ecological system; it has great significances in drought monitoring, meteorology, hydrology, and other application fields [1]. When compared with ground-based measurements, the remote sensing technique can capture the soil moisture information of a large spatial extent within a snapshot, which is less time- and labor-consuming. Due to their high sensitivity to soil permittivity and their flexible all-weather and all-time sensing abilities, the use of microwave remote sensing for soil moisture retrieval has attracted much attention [4,5,6,7]. SAR data have been widely used in soil moisture retrieval, especially for small-scale studies
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.