Abstract

AbstractWestern US forest ecosystems and downstream water supplies are reliant on seasonal snowmelt. Complex feedbacks govern forest–snow interactions in which forests influence the distribution of snow and the timing of snowmelt but are also sensitive to snow water availability. Notwithstanding, few studies have investigated the influence of forest structure on snow distribution, snowmelt and soil moisture response. Using a multi‐year record from co‐located observations of snow depth and soil moisture, we evaluated the influence of forest‐canopy position on snow accumulation and snow depth depletion, and associated controls on the timing of soil moisture response at Boulder Creek, Colorado, Jemez River Basin, New Mexico, and the Wolverton Basin, California. Forest‐canopy controls on snow accumulation led to 12–42 cm greater peak snow depths in openversusunder‐canopy positions. Differences in accumulation and melt across sites resulted in earlier snow disappearance in open positions at Jemez and earlier snow disappearance in under‐canopy positions at Boulder and Wolverton sites. Irrespective of net snow accumulation, we found that peak annual soil moisture was nearly synchronous with the date of snow disappearance at all sites with an average deviation of 12, 3 and 22 days at Jemez, Boulder and Wolverton sites, respectively. Interestingly, sites in the Sierra Nevada showed peak soil moisture prior to snow disappearance at both our intensive study site and the nearby snow telemetry stations. Our results imply that the duration of soil water stress may increase as regional warming or forest disturbance lead to earlier snow disappearance and soil moisture recession in subalpine forests. Copyright © 2014 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.