Abstract
When soil moisture (SM) content falls within a transitional regime between dry and wet conditions, it controls evaporation, affecting atmospheric heat and humidity. Accordingly, different SM regimes correspond to different gears of land-atmosphere coupling, affecting climate. Determining patterns of SM regimes and their future evolution is imperative. Here, we examine global SM regime distributions from ten climate models. Under increasing CO2, the range of SM extends into unprecedented coupling regimes in many locations. Solely wet regime areas decline globally by 15.9%, while transitional regimes emerge in currently humid areas of the tropics and high latitudes. Many semiarid regions spend more days in the transitional regime and fewer in the dry regime. These imply that a larger fraction of the world will evolve to experience multiple gears of land-atmosphere coupling, with the strongly coupled transitional regime expanding the most. This could amplify future climate sensitivity to land-atmosphere feedbacks and land management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.