Abstract
Abstract Soil moisture is the foundation of ecosystem sustainability in arid and semi-arid regions, and the spatial–temporal details of soil moisture dynamics of afforested areas can benefit for land use management in water-shortage regions such as the Loess Plateau of China. In this study, spatial–temporal variations in soil moisture under Robinia pseudoacacia plantations on the Loess Plateau were analyzed. A total of 147 observations of soil moisture content (SMC) data to a depth of 500 cm soil profile were collected in 23 counties via field transect surveys and analyses of published literature. The results suggested that (1) the depth-averaged SMC was generally lower under forest sites than under cropland, both in the shallow layers and in the deep profiles. This finding implied that, compared with the native vegetation, the introduced R. pseudoacacia plantations caused intense reductions in soil moisture. (2) SMC was positively correlated with climatic factors (mean annual precipitation (MAP), mean annual temperature (MAT), and the Palmer drought severity index (PDSI)), indicating that the SMC under R. pseudoacacia plantations was highly consistent with the hydrothermal conditions at the regional scale. (3) The decreasing amplitude of SMC was linearly related to the increasing number of restoration years, especially in the areas below the 500–550 mm precipitation threshold. This finding showed that the restoration ageing sequence was an influential factor that affected the regional SMC variation in R. pseudoacacia plantations on the Loess Plateau. Our results suggest that afforestation activities should be avoided if the local total precipitation is insufficient for replenishing the soil moisture and that local tree species with a lower demand for water resources should be considered a top priority for further afforestation of the Loess Plateau.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.