Abstract
Acid forest soils in South China experience a chronically elevated input of atmospheric nitrogen (N), turning them into hot spots for gaseous N emissions. Soil moisture is known to be a major controller for the partitioning of gaseous N loss to nitric (NO) and nitrous oxide (N2O), which may be of particular relevance in the monsoonal climate of South China. To study this partitioning in more detail, we determined gas phase kinetics of NO and N2O release during laboratory dry-out of acidic surface soils from the headwater catchment TieShanPing (TSP), situated close to Chongqing, SW China. Soils were sampled from two hydrologically distinct environments, a well-drained hill slope (HS), and a periodically flooded groundwater discharge zone (GDZ). Production and consumption of NO were studied in an automated flow-through system purged with NO-free or NO-spiked air. Production rates peaked at 21% and 18% water filled pore space (WFPS) in HS and GDZ soils, respectively, suggesting nitrification as the dominant process of NO formation in both landscape units. In HS soils, maximum production and consumption occurred at the same WFPS, whereas GDZ soils displayed maximum NO consumption at higher WFPS than maximum production, suggesting that denitrification is an important NO sink in GDZ soils. Net N2O release was largest at 100% WFPS and declined steadily during drying. Integrated over the entire range of soil moisture, potential NO-N loss outweighed potential N2O-N loss, suggesting that N-saturated, acid forest soil is an important NO source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.