Abstract

Micro- and nanoplastics have become very common pollutants of soil ecosystems, yet their impact on soil microorganisms remains poorly understood. We exposed a model soil bacterium (Pseudomonas putida) and a model soil fungus (Coprinopsis cinerea) to different concentrations of nanosized polystyrene beads in microfluidic soil chips. The transparent micromodels allowed us to perform direct investigation of the effect of beads on abundance of the microbes and on interactions of individual cells with the nanobeads. Growth of both the bacteria and the fungi was reduced by the exposure to nanoplastics, along with a reduction in bacterial enzymatic activity. Nanobeads were strongly attracted to fungal hyphae, causing a high concentration of beads along the first hyphae to enter a pore space, and thus freeing the surrounding from a large proportion of the beads. We also found plastic particle accumulation along fungal hyphae in setups with soil inocula.  Chips with soil inocula also allowed us to investigate direct interactions of microbes with plastic particles, and particle aggregation under the influence of the microbe-affected soil solution over time. These studies contribute to our understanding of direct toxicity effects and interactions of nanoplastics and soil microbes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.