Abstract

Rhododendron maximum is a native evergreen shrub that has expanded in Appalachian forests following declines of american chestnut (Castanea dentata) and eastern hemlock (Tsuga canadensis). R. maximum is of concern to forest managers because it suppresses hardwood tree establishment by limiting light and soil nutrient availability. We are testing R. maximum removal as a management strategy to promote recovery of Appalachian forests. We hypothesized that R. maximum removal would increase soil nitrogen (N) availability, resulting in increased microbial C-demand (i.e. increased C-acquiring enzyme activity) and a shift towards bacterial-dominated microbial communities. R. maximum removal treatments were applied in a 2 × 2 factorial design, with two R. maximum canopy removal levels (removed vs not) combined with two O-horizon removal levels (burned vs unburned). Following removals, we sampled soils and found that dissolved organic carbon (DOC), N (TDN, NO3, NH4), and microbial biomass all increased with R. maximum canopy + O-horizon removal. Additionally, we observed increases in C-acquisition enzymes involved in degrading cellulose (β-glucosidase) and hemicellulose (β-xylosidase) with canopy + O-horizon removal. We did not see treatment effects on bacterial dominance, though F:B ratios from all treatments increased from spring to summer. Our results show that R. maximum removal stimulates microbial activity by increasing soil C and N availability, which may influence recovery of forests in the Appalachian region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.