Abstract

Changes in microbial populations were evaluated following inoculation of contaminated soil with a 3-chlorobenzoate degrader. Madera sandy loam was amended with 0, 500, or 1,000 microg 3-chlorobenzoate g(-1) dry soil. Selected microcosms were inoculated with the degrader Comamonas testosteroni BR60. Culturable bacterial degraders were enumerated on minimal salts media containing 3-chlorobenzoate. Culturable heterotrophic bacteria were enumerated on R2A. Isolated degraders were grouped by enterobacterial repetitive intergenic consensus sequence-polymerase chain reaction fingerprints and identified based on 16S ribosomal-DNA sequences. Bioaugmentation increased the rate of degradation at both levels of 3-chlorobenzoate. In both the 500 and 1,000 microg 3-chlorobenzoate g(-1) dry soil inoculated microcosms, degraders increased from the initial inoculum and decreased following degradation of 3-CB. Inoculation delayed the development of indigenous 3-chlorobenzoate degrading populations. It is unclear if inoculation altered the composition of indigenous degrader populations. In the uninoculated soil, degraders increased from undetectable levels to 6.6 x 10(7) colony-forming-units g(-1) dry soil in the 500 microg 3-chlorobenzoate g(-1) dry soil microcosms, but none were detected in the 1,000 microg 3-chlorobenzoate g(-1) dry soil microcosms. Degraders isolated from uninoculated soil were identified as one of two distinct Burkholderia species. In the uninoculated soil, numbers of culturable heterotrophic bacteria initially decreased following addition of 1,000 microg 3-chlorobenzoate g(-1) dry soil. Inoculation with C. testosteroni reduced this negative impact on culturable bacterial numbers. The results indicate that bioaugmentation may not only increase the rate of 3-chlorobenzoate degradation but also reduce the deleterious effects of 3-chlorbenzoate on indigenous soil microbial populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.