Abstract

Microbial activity and the diversity of their catabolic potential would be stratified according to soil profile as a result of differing content of soil organic C and they would be altered by applying dairy sewage sludge (DSS) to the surface and subsequently ploughing. We applied 26 Mg ha−1 of DSS and the same nutrient dose of mineral fertilisers as an NPK reference to the soil before sowing winter rape (Brassica napus) in the field experiment. We evaluated the impact of the fertilisers on microbial activity, measured with dehydrogenase and respiratory activity, and diversity of the microbes’ catabolic potential from non-rhizosphere and rhizosphere soil at selected depths. In the surface rhizosphere soil, there were significant increases in microbial catabolic potential (>25 %) and respiratory activity (>20 %) due to DSS application. All of the microbial parameter values in non-rhizosphere soil were higher at 0–20 than at 25–30 cm. These results are important for improving the management approach of diary sewage sludge application to agricultural soils in the context of increasing microbial activity in the soil profile and reducing mineral fertiliser use.

Highlights

  • In the specific case of dairy sewage sludge (DSS) use in agriculture, the positions adopted by farmers organisations have been quite different from one country to another in the recent years

  • Microbial activity and the diversity of their catabolic potential would be stratified according to soil profile as a result of differing content of soil organic C and they would be altered by applying dairy sewage sludge (DSS) to the surface and subsequently ploughing

  • We evaluated the impact of the fertilisers on microbial activity, measured with dehydrogenase and respiratory activity, and diversity of the microbes’ catabolic potential from non-rhizosphere and rhizosphere soil at selected depths

Read more

Summary

Introduction

In the specific case of dairy sewage sludge (DSS) use in agriculture, the positions adopted by farmers organisations have been quite different from one country to another in the recent years Their motivations and constraints are in many cases similar. The problem of inorganic fertilisers application is quite complex, since interrelaces such negative processes as soil degradation, desertification, erosion, and accelerated greenhouse effects and climate change (Diacono and Montemurro 2010). These concerns are likely to be increased in the near future along with the cost of fertilisers

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.