Abstract

This study explores the impact of diverse organic fertilizers, including a non-traditional cyanobacteria-based alternative, on soil microbial communities in varying soil types and depths. The research aims to elucidate the effects of these fertilizers on soil microorganisms in certified organic cucumber (Cucumis sativus) field and peach (Prunus persica) orchard settings. Fertilizers were applied either on the soil surface or banded 5 cm below the soil surface, and microbial ester-linked fatty acids (EL-FAMEs) were analyzed in collected soils. Notably, cyanobacteria and Neptune hydrolyzed fish emulsion fertilizers induced significant alterations in the microbial communities of cucumber plots, enhancing microbial biomass and favoring the proliferation of Gram-negative bacteria, Gram-positive bacteria, and actinomycetes compared to other treatments. In the peach orchard, fertilizer choice differentially impacted microbial communities, especially in the first year and at greater soil depths. Notably, the supplementation of poultry manure with cyanobacteria fertilizer resulted in augmented microbial biomass and relative fungal and arbuscular mycorrhizal fungal abundances compared to poultry manure alone. These shifts have promising implications for organic vegetable and fruit cultivation. The study further underscores the potential of cyanobacteria-based fertilizers to reduce reliance on traditional options and minimize manure application, promoting self-sufficiency and benefiting soil microorganisms, plant growth, and the ecosystem. Thus, the research emphasizes the importance of exploring and adopting cyanobacteria-based fertilizers to bolster sustainable agricultural practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call