Abstract

Tidal flats in eastern China have undergone various transformations into other land-use types. Understanding the impact of land-use conversion on soil properties and microbial communities is crucial for effective ecological conservation efforts. In this study, we compared soil chemical properties and the diversity, composition, and ecological functions of soil bacterial and fungal communities across four land-use types: natural bare land (BL), unused reclaimed tidal land (Phragmites, PL), agricultural land (maize, ML), and shelterbelt land (SL), utilizing next-generation sequencing technology. The results indicated that soil electrical conductivity decreased, while soil organic carbon (SOC) and nutrient contents increased in ML and SL compared to BL and PL. The bacterial Chao1 and fungal Chao1 and Shannon values vary across different land-use types. A higher relative abundance of Acidobacteriota, specifically RB41, was found in ML compared to BL. Principal coordinate and PerMANOVA analysis showed that the composition of bacterial and fungal communities differed significantly across the four land-use types. SOC explained the most variance in both bacterial and fungal communities. Carbon-related functional genes and fungal guilds exhibit greater diversity across the four land-use types compared to nitrogen-related functional genes. In conclusion, the transformation of natural land-use types to managed one greatly altered soil chemical and microbial properties. Our study offers foundational insights into the microbial communities in the typical land-use types of Eastern China’s coastal area. Future studies should emphasize the quantification of human interventions and their impact on soil microbial communities and ecological functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.