Abstract

The effect and relative contributions of C and P inputs on soil microbial biomass P (MBP) accumulation were studied in three long-term soil fertility experiments with various soil and climate characteristics at Qiyang, Yangling, and Wulumuqi. The maximum of soil MBP in all three sites was 47.8 mg P kg-1. The MBP accumulated per unit in soil (mg P kg-1 soil) was correlated with a 4.91 mg kg-1 increase in Olsen P. For each unit increase in P surplus (kg P ha-1), manure C (kg C ha-1), and stubble C (kg C ha-1), MBP accumulation increased by 330, 3.7, and 13 units (μg P kg-1 soil), respectively. The soil MBP was positively correlated with crop yield and P uptake, making the soil MBP a useful soil P fertility index. The critical levels of the soil MBP pool were 140 kg ha-1, 57–62 kg ha-1, and 33–35 kg ha-1 in acidic red soil, loessial soil, and grey desert soil, respectively. This is the first report to establish a quantitative index of soil fertility based on the soil MBP pool. Our findings demonstrate that C input is a good driver of soil MBP accumulation. Integration of the soil MBP as an index of soil P fertility into agricultural P management is useful to help manage mineral P fertilizers as part of sustainable agricultural practices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.