Abstract

In agroecosystems, temporal diversification creates a sequence of short-lived habitats through time. Crop species as well as the diversity of crops grown in sequence might affect soil biodiversity and nutrient cycling processes. In the present study, we focused on a long-term crop rotation established in 2006 in Lower Saxony, Germany on a Luvisol. Winter wheat (WW) and silage maize (SM) were grown in continuous cultivation as well as in rotations. WW rotations span up to six years (including silage maize, sugar beet, winter rape and/or grain pea). Over two years, microbial biomass carbon (MBC) as well as kinetics (Michaelis-Menten Vmax and Km) of extracellular hydrolytic enzymes (β-glucosidase (BG), N-acetyl-β-glucosaminidase (NAG) and acid phosphomonoesterase (AP)) were measured in topsoil (0–10 cm depth) three times during the growing season. Continuous wheat increased soil microbial parameters compared to continuous maize as indicated by the higher microbial biomass to soil organic carbon ratio and higher potential enzymes activities involved in the C- and N-cycles (Vmax of BG and NAG). The efficiency of these enzymes was lowest in continuous maize (highest Km of BG and NAG). Maize and sugar beet as preceding crop of WW significantly decreased MBC in the 1st year but not in the 2nd year WW. Sugar beet decreased BG activity as well as its substrate affinity (increased Km). The effect of sugar beet on MBC and enzyme kinetics depended on the preceding crop and lessened with grain pea as the preceding crop. Soil microorganisms in the wheat phase benefited from winter rape as the preceding crop, shown by an increased biomass and efficiency to turn over chitin and peptidoglycan (decreased Km of NAG). Differences between cultivated crops, cropping history and fluctuations within the year in soil microbial biomass and enzyme kinetics are shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.