Abstract

AbstractUnderground structures located in liquefiable soil deposits are susceptible to floatation following a major earthquake event. Such failure phenomenon generally occurs when the soil liquefies and loses its shear resistance against the uplift force from the buoyancy of the underground structure. Numerical modeling accompanied with centrifuge experiments with shallow circular structures has been carried out to investigate the floatation failure at different buried depths of the structure. The influence of the magnitude of input sinusoidal earthquake shaking was also studied. Both numerical and experimental results showed matching uplift response of the structures and acceleration and pore-pressure measurements in the liquefied soil deposit. A higher uplift displacement of the structure was observed for shallower buried depth, thereby indicating the influence of overlying soil weight against floatation. Results also showed that the structures commenced floatation in the presence of high excess pore pr...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.