Abstract

Drought events, agricultural practices and plant communities influence microbial and soil abiotic parameters which can feedback to fodder production. This study aimed to determine which soil legacies influence plant biomass production and nutritional quality, and its resistance and recovery to extreme weather events. In a greenhouse experiment, soil legacy effects on Lolium perenne were examined, first under optimal conditions, and subsequently during and after drought. We used subalpine grassland soils previously cultivated for two years with grass communities of distinct functional composition, and subjected to combinations of climatic stress and simulated management. The soil legacy of climatic stress increased biomass production of Lolium perenne and its resistance and recovery to a new drought. This beneficial effect resulted from higher nutrient availability in soils previously exposed to climatic stresses due to lower competitive abilities and resistance of microbial communities to a new drought. This negative effect on microbial communities was strongest in soils from previously cut and fertilized grasslands or dominated by conservative grasses. In subalpine grasslands more frequent climatic stresses could benefit fodder production in the short term, but threaten ecosystem functioning and the maintenance of traditional agricultural practices in the long term.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call