Abstract

Caragana korshinskii, a leguminous shrub, a common specie, is widely planted to prevent soil erosion on the Loess Plateau. The objective of this study was to determine how the plantation ages affected soil, leaf and root nutrients and ecological stoichiometry. The chronosequence ages of C. korshinskii plantations selected for this study were 10, 20 and 30 years. Soil organic carbon (SOC) and soil total nitrogen (STN) of C. korshinskii plantations significantly increased with increase in the chronosequence age. However, soil total phosphorous (STP) was not affected by the chronosequence age. The soil C: N ratio decreased and the soil C: P and N: P ratios increased with increasing plantation age. The leaf and root concentrations of C, N, and P increased and the ratios C: N, C: P, and N: P decreased with age increase. Leaf N: P ratios were >20, indicating that P was the main factor limiting the growth of C. korshinskii. This study also demonstrated that the regeneration of natural grassland (NG) effectively preserved and enhanced soil nutrient contents. Compared with NG, shrub lands (C. korshinskii) had much lower soil nutrient concentrations, especially for long (>20 years) chronosequence age. Thus, the regeneration of natural grassland is an ecologically beneficial practice for the recovery of degraded soils in this area.

Highlights

  • Ecological stoichiometry is the study of the balance of energy and multiple chemical elements in ecological interactions [1]

  • Based on the previous studies, we addressed following hypotheses: (1) plantation ages had the positive effects on soil nutrients and ecological stoichiometry; (2) natural restoration might be better method to improve soil nutrients compared with establishing C. korshinskii for the limited precipitation in drylands

  • Concentrations of soil total nitrogen (STN) increased with increase in the plantation age, and the highest value was measured at 30 yr

Read more

Summary

Introduction

Ecological stoichiometry is the study of the balance of energy and multiple chemical elements in ecological interactions [1]. Ecological stoichiometry, especially for carbon (C), nitrogen (N) and phosphorus (P), plays an important role in analyzing composition, structure and function of a concerned community and ecological system [3]. It has been used in different different systems to explore the limited nutrition for varied plant groups [2, 4,5,6,7,8,9].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call