Abstract

Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia) monoculture system (JRMS), a wheat (Triticum aestivum) monoculture system (TAMS), and a walnut-wheat alley cropping system (JTACS) over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0–40 cm soil depth. Within JTACS, the speed of the wetting front’s downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world.

Highlights

  • In both arid and semi-arid areas, soil infiltration is recognized as a fundamental ecological process that affects the water budget of vegetation, runoff, and the related risk of soil erosion [1, 2]

  • A widely practiced local agroforestry model, i.e., a walnut (Juglans regia)-wheat (Triticum aestivum) alley cropping system (JTACS), was our research focus, while the walnut (JRMS) and wheat (TAMS) monoculture systems were used as controls

  • The infiltration rates temporal distribution in JTACS all have a peak between July and September, and the rainfall temporal distribution in the region have a peak in this period, the two peaks coupled

Read more

Summary

Introduction

In both arid and semi-arid areas, soil infiltration is recognized as a fundamental ecological process that affects the water budget of vegetation, runoff, and the related risk of soil erosion [1, 2]. Permeability is an important indicator of soil erosion resistance [3]. The Improvement of Agroforestry System on Soil Water Infiltration

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call