Abstract

Chemical oxidation has been applied to remove soil contaminants and thereby reduce human and ecological risks from contaminated sites. However, few studies have been conducted on the natural infiltration of oxidant solutions into unsaturated soil. Moreover, the infiltration capacity of oxidant solutions at various concentrations in unsaturated soil has not yet been studied. This study investigated the natural infiltration tendency of oxidant solutions like hydrogen peroxide (H2O2), potassium permanganate (KMnO4), and sodium persulfate (Na2S2O8), in sand and sandy loam. Cumulative infiltration was recorded from a soil column equipped with a Mariotte reservoir. The infiltration rate, sorptivity, and unsaturated hydraulic conductivity were obtained from the cumulative infiltration results. Na2S2O8 showed the highest infiltration rate in both sand and sandy loam, and the infiltration of Na2S2O8 increased as the concentration was increased from 0.05 to 1%. However, the infiltration of KMnO4 and H2O2 solutions was governed more by chemical reaction behavior than by liquid physical properties or soil hydraulic properties. The production of oxides and gas due to reaction induced clogging in flow paths, resulting in less infiltration. Infiltration of H2O2 at concentrations greater than 0.5% was not observed in sand or sandy loam due to gas formation and swelling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call