Abstract

To generate field-relevant inactivation data for incorporation into models to predict the likelihood of viral contamination of surface waters by septic seepage. Inactivation rates were determined for PRD1 bacteriophage and Adenovirus 2 in two catchment soils under a range of temperature, moisture and biotic status regimes. Inactivation rates presented for both viruses were significantly different at different temperatures and in different soil types (alpha = 0.05). Soil moisture generally did not significantly affect virus inactivation rate. Biotic status significantly affected inactivation rates of PRD1 in the loam soil but not the clay-loam soil. Adenovirus 2 was inactivated more rapidly in the loam soil than PRD1 bacteriophage. Virus inactivation rates incorporated into models should be appropriate for the climate/catchment in question with particular regard to soil type and temperature. Given that PRD1 is similar in size to adenoviruses, yet more conservative with regard to inactivation in soil, it may be a useful surrogate in studies of Adenovirus fate and transport. A better understanding of the factors that govern virus fate and transport in catchments would facilitate the design of barrier measures to prevent viral contamination of surface waters by septic seepage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.