Abstract

Guidelines of effective soil hydraulic parameters were developed to be applicable in simulating average infiltration and subsequent moisture redistribution over a large-scale heterogeneous field. Average large-scale infiltration and redistribution in heterogeneous soils were quantified through multiple simulations of local-scale processes. The effective hydraulic parameters were derived to simulate the average amount of infiltrating water, and to capture the subsequent surface soil moisture redistribution averaged over the large heterogeneous landscape. The results demonstrated that the effective hydraulic parameters typically exhibited a step change from infiltration to redistribution, with the size of the step change being related to the degree of hydraulic parameter heterogeneity and the correlations among the hydraulic parameters. However, the effective hydraulic parameters did not change significantly over time for the moisture redistribution. It was further demonstrated that the size of the step change was smallest for effective saturated hydraulic conductivity. Editor Z.W. Kundzewicz; Associate editor Y. Guttman Citation Zhu, J.T. and Sun, D.M., 2012. Soil hydraulic properties for moisture redistribution in a large-scale heterogeneous landscape. Hydrological Sciences Journal, 57 (6), 1196–1206.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call