Abstract

Pile burning of conifer slash is a common fuel reduction practice in forests of the western United States that has a direct, yet poorly quantified effect on soil heating. To address this knowledge gap, we measured the heat pulse beneath hand-built piles ranging widely in fuel composition and pile size in sandy-textured soils of the Lake Tahoe Basin. The soil heat pulse depended primarily on fuel composition, not on pile size. Burn piles dominated by large wood produced extreme temperatures in soil profile, with lethal heating lasting up to 3 days. In contrast, the heat pulse was moderate beneath piles containing a mixture of fuel sizes. Considerable spatial variability was noted, as soil temperatures were generally greatest near pile centres and decline sharply toward the pile edges. Also, saturating pile burns with water 8 h after ignition (‘mopping up’) effectively quenched the soil heat pulse while allowing near-complete fuel consumption. The findings suggest that burning of hand piles will not result in extreme or extensive soil heating except for uncommon conditions when piles are dominated by large wood and occupy a high percentage of the ground surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call