Abstract

The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was determined with a spectral method. The soil surface heat flux was compared with the net radiation above the canopy for four typical days in 1995. These data were fitted linearly. The slope of this parameterisation was 0.092, with a leaf area index of 2.5 (fully-leafed canopy). This result was compared with four other studies. To produce an exponential fit of the slope against the leaf area index the Beer-Bouguer law for radiation extinction in canopies and a soil surface heat flux proportional to the net radiation at the forest floor was used. An extinction coefficient of 0.36 was found. This result is recommended for future studies, if soil surface heat flux is requested and net radiation data above the canopy as well as leaf area index are available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call