Abstract
The distribution of microbial functional groups in soil may be governed by the interaction between the soil environment and the presence of other microbial competitors or facilitators. In forest soils, one of the most important groups of organisms are fungi, which are vital to many ecosystem processes such as nutrient cycling and decomposition, and can form direct connections to primary producers. Nevertheless, the overall effect of soil fungi on the structure and distribution of the other soil microbial functional groups has not been thoroughly investigated. We hypothesized that by altering the soil environment, fungi create favorable conditions for Archaea, methane oxidizing bacteria (MOB) and denitrifying bacteria (DNB), thereby potentially influencing the ability of forest soils to produce or consume greenhouse gases. To test these hypotheses, we studied the distribution of microbial functional groups and fungi in forest soil using molecular methods and related that distribution to soil environment and extracellular enzyme activity as a measure of microbial activity and metabolic effort. Non-metric multidimensional scaling of terminal restriction fragment length (TRFLP) profiles found that DNB and MOB largely separated within ordination space, suggesting little overlap of these bacteria in soil cores. In addition, DNB were significantly positively correlated with fungal biomass and with chitinase activity while MOB were negatively correlated with both. Most archaeal TRFs were also negatively correlated with fungal biomass, suggesting that forest Archaea and MOB have similar relationships to fungal biomass. Soil chemistry including soil carbon (C), nitrogen (N) and bicarbonate extractable phosphorus (P) were not significantly correlated with DNB, MOB or Archaea. Our results suggest that soil fungi might influence the spatial distribution of important prokaryotic groups in forests, including some groups that mediate the production and consumption of important greenhouse gases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.