Abstract

Apple replant disease (ARD) is a disease complex that reduces survival, growth and yield of replanted trees, and is often encountered in establishing new orchards on old sites. Methyl bromide (MB) has been the fumigant used most widely to control ARD, but alternatives to MB and cultural methods of control are needed. In this experiment, we evaluated the response of soil microbial communities and tree growth and yield to three pre-plant soil treatments (compost amendment, soil treatment with a broad-spectrum fumigant, and untreated controls), and use of five clonal rootstock genotypes (M.7, M.26, CG.6210, G.30 and G.16), in an apple replant site in Ithaca, New York. Polymerase chain reaction (PCR)—denaturing gradient gel electrophoresis (DGGE) analysis was used to assess changes in the community composition of bacteria and fungi in the bulk soil 8, 10, 18 and 22 months after trees were replanted. PCR-DGGE was also used to compare the community composition of bacteria, fungi and pseudomonads in untreated rhizosphere soil of the five rootstock genotypes 31 months after planting. Tree caliper and extension growth were measured annually in November from 2002 to 2004. Apple yield data were recorded in 2004, the first fruiting year after planting. Trees on CG.6210 rootstocks had the most growth and highest yield, while trees on M.26 rootstocks had the least growth and lowest yield. Tree growth and yield were not affected by pre-plant soil treatment except for lateral extension growth, which was longer in trees growing in compost-treated soil in 2003 as compared to those in the fumigation treatment. Bulk soil bacterial PCR-DGGE fingerprints differed strongly among the different soil treatments 1 year after their application, with the fingerprints derived from each pre-plant soil treatment clustering separately in a hierarchical cluster analysis. However, the differences in bacterial communities between the soil treatments diminished during the second year after planting. Soil fungal communities converged more rapidly than bacterial communities, with no discernable pattern related to pre-plant soil treatments 10 months after replanting. Changes in bulk soil bacterial and fungal communities in response to soil treatments had no obvious correlation with tree performance. On the other hand, rootstock genotypes modified their rhizosphere environments which differed significantly in their bacterial, pseudomonad, fungal and oomycete communities. Cluster analysis of PCR-DGGE fingerprints of fungal and pseudomonad rhizosphere community DNA revealed two distinct clusters. For both analyses, soil sampled from the rhizosphere of the two higher yielding rootstock genotypes clustered together, while the lower yielding rootstock genotypes also clustered together. These results suggest that the fungal and pseudomonad communities that have developed in the rhizosphere of the different rootstock genotypes may be one factor influencing tree growth and yield at this apple replant site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call