Abstract

Changes in soil C storage due to management practices are important in relation to soil quality and to the broader issue of atmospheric C sequestration. Our objective was to evaluate the effects of soil fertility management on C fluxes under two spring wheat (Triticum aestivum L.) rotations in semiarid southwestern Saskatchewan, i.e., continuous wheat (Cont W) and a rotation that included summerfallow every third year (F-W-W). Continuous wheat was grown under two fertility regimes since initiation of the experiment in 1967, i.e., fertilization with N+P (no nutrient limitation) or with P only. In F-W-W there were three fertility treatments: N+ P, N only, and P only. We measured soil CO2 emissions under all fertility treatments and rotation phases during the 1995 and 1996 cropping seasons (emissions were measured at about weekly intervals between spring and freeze-up in autumn). Inputs of C in straw were measured and a root:straw ratio of 0.59 was used to estimate root C inputs. Alleviation of nutrient limitations generally had a positive effect on wheat growth (and thus on C inputs), particularly in 1995, the wetter of the 2 yr (precipitation 14% greater than average). For example, C inputs in 1995 under Cont W were estimated at 2700 kg ha-1 in the N+P treatment compared with 1500 kg ha-1 in the P only treatment. Fertility treatments had little effect on CO2 emissions; e.g., for Cont W the mean flux for the 1995 monitoring period was 2.7 mmol CO2 m-2s-1 where N + P was applied and 2.6 mmol CO2 m-2s-1 where P only was applied. Greater C inputs, but similar outputs of CO2-C for the N + P treatment vs. the systems receiving N or P only, suggest that proper fertilization resulted in a gain in soil C. However, quantifying the fertility-induced C gain is problematic because of uncertainty regarding effects of fertility on several components of the C budget, particularly root-C inputs and the contribution of rhizosphere respiration to the measured CO2 flux. Key words: Carbon sequestration, N and P fertilization, CO2 emissions, C inputs in crop residues, spring wheat, summerfallow

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.