Abstract
ABSTRACT Araucaria angustifolia is a conifer species found in South American subtropical forests that comprises less than 3% of the native vegetation and little is known concerning the accumulation of nutritional elements in its needles. In this study, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) was used to assess the elemental distribution in needles. Needles were selected from 28 month-old plants grown in a fertilization experiment supplied with: 1) N, P, and K; 2) N and P; and 3) N and K. In microanalysis, four types of specialized needle tissues (adaxial epidermis, palisade mesophyll, spongy mesophyll and abaxial epidermis) were evaluated for elemental composition (C, O, P, K, Ca, S and Al). When crystals were detected, the concentrations of 12 elements were determined (C, O, P, K, Ca, S, Al, Fe, Mg, Na, Si, and Cl). Under low soil P and K, these elements were found in low concentrations in the epidermis, mesophyll, and crystals. Under low soil P, Ca and K accumulated in the spongy mesophyll, while under low soil K only Ca accumulated in this tissue. In addition, low soil P or K availability favored the formation of crystals; crystals under low soil K availability had more Ca and Mg. Soil P and K availability affected the distribution of elements in needles of A. angustifolia, in that type of tissue and formation of crystals were key to the nutrient dynamics in needles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.