Abstract
Soil degradation and erosion in semi-arid regions can significantly impact agricultural development, environmental sustainability, and hydrological balance. Understanding the impacts of land use changes and soil and water conservation (SWC) technique implementation on soil erosion and sediment yield is critical to planning effective watershed management. This study aims to evaluate the impacts of environmental changes in the Merguellil watershed (Central Tunisia) over the last forty years. To achieve this, remote sensing techniques and a geographic information system (GIS) will be employed to classify Landsat images from 1980 to 2020. Additionally, the Revised Universal Soil Loss Equation model will be utilized to estimate soil erosion rates, while the sediment delivery distributed model will be employed for sediment yield modeling. Spatiotemporal changes in land use and land cover and in areas treated with SWC techniques were analyzed as the main factors influencing changes in erosion and sediment yield. The combined impact of land use change and SWC techniques resulted in a decrease in the annual soil erosion rate from 18 to 16 t/ha/year between 1980 and 2020 and in sediment yield from 9.65 to 8.95 t/ha/year for the same period. According to the model’s predictions, both soil erosion and sediment yield will experience a slight increase with further degradation of natural vegetation and a reduction in the efficiency of SWC works. This emphasizes the importance of continued efforts in adopting and sustaining SWC techniques, as well as preserving natural vegetation cover, to proactively combat soil degradation and its adverse effects on the environment and communities. Continuous dedication to these measures is crucial to preserving our ecosystem, promoting sustainable practices, and protecting the well-being of both the environment and society.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.