Abstract
Xichou County of Wenshan Zhuang and Miao Autonomous Prefecture in southeast Yunnan is one of the karst mountainous areas in southwest China showing typical rock desertification. During this study, we set up three soil erosion contrast test spots at Muzhe Village, Benggu Township, Xichou County, which was the birthplace of the Xichou rock-desertified land consolidation mode. The three spots included the terrace land spot (already consolidated land), sloping land spot (unconsolidated sloping land under rock desertification), and standard runoff spot (bare land spot). In 2007, a whole-year complete observation was conducted during the rainy season and “rainfall-erosion” data were obtained for 32 times. Our analysis showed that during the entire observation period, the number of the rainfalls that led to soil erosion accounted for 34.04% of the number of all rainfalls and the amount of the rainfalls that led to soil erosion accounted for 84.17% of the total amount of all rainfalls. The average erosive rainfall standard in the three test spots was 11.0 mm, slightly higher than the 10 mm standard that has been adopted all over China, but lower than the 12.7 mm standard of the US and the 13.0 mm standard of Japan. According to single-factor analysis, the soil loss in the sloping land spot (L2) and that in the bare land spot (L3) are correlated to certain extent to many other factors, including the single precipitation (P), rainfall intensity during the maximum ten minutes (I10), rainfall intensity during the maximum 20 minutes (I20), rainfall intensity during the maximum 30 minutes (I30), rainfall intensity during the maximum 40 minutes (I40), and rainfall intensity during the maximum 60 minutes (I60). Among these factors, they are of the highest relativity with I60. According to double-factor analysis, both L2 and L3 are of good relativity with P and I60. According to multi-factor analysis, L2 and L3 are also of good relativity with seven rainfall indexes, namely, P, Ia (average rainfall intensity), I10, I20, I30, I40, and I60, with their related coefficient R reaching 0.906 and 0.914, respectively. The annual soil losses in the three test spots are widely different: 1030.70 t/km2·a in the terrace land spot, which indicates a low-level erosion; 12913.22 t/km2·a in the sloping land spot (unconsolidated spot), some 12.5 times than that in the terrace land spot, which indicates an ultra-high-level erosion; and 19511.67 t/km2·a in the bare land spot, some 18.9 times than that in terrace land spot, indicating an acute erosion. These figures fully show that the Xichou rock-desertified land consolidation mode plays a significant role in soil conservation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.