Abstract

Highly diverse exoenzymes mediate the energy flow from substrates to the multitrophic microbiota within the soil decomposer micro-food web. Here, we used a "soil enzyme profile analysis" approach to establish a series of enzyme profile indices; those indices were hypothesized to reflect micro-food web features. We systematically evaluated the shifts in enzyme profile indices in relation to the micro-food web features in the restoration of an abandoned cropland to a natural area. We found that enzymatic C:N stoichiometry and decomposability index were significantly associated with substrate availability. Furthermore, the higher Shannon diversity index in the exoenzyme profile, especially for the C-degrading hydrolase, corresponded to a greater microbiota community diversity. The increased complexity and stability of the exoenzyme network reflected similar changes with the micro-food web networks. In addition, the gross activity of the enzyme profile as a parameter for soil multifunctionality, effectively predicted the substrate content, microbiota community size, diversity, and network complexity. Ultimately, the proposed enzymic channel index was closely associated with the traditional decomposition channel indices derived from microorganisms and nematodes. Our results showed that soil enzyme profile analysis reflected very well the decomposer food web features. Our study has important implications for projecting future climate change or anthropogenic disturbance impacts on soil decomposer micro-food web features by using soil enzyme profile analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call