Abstract

Studies have shown that physical and chemical properties of soils may be significantly changed when they are subjected to long-term reclaimed water irrigation. It remains unclear how reclaimed water application may affect nutrient cycling in soils. Soil enzymes are responsible for the biogeochemical cycling of many elements and are more sensitive indicators of the ecological changes. In this study, 17 soil enzymes, including those associated with the C, N, P, and S cycles and two oxidoreductases (catalase and dehydrogenase), were assayed in soils obtained from five long-term reclaimed wastewater irrigation sites in southern California. The soil enzyme activities varied widely among the sampling sites. Compared with their respective controls, the overall activities of enzymes involved in the cycling of the four elements in soil were enhanced by an average of 2.2- to 3.1-fold. Principal component analysis and cluster analysis indicated that the soil microbial functional diversity may be evaluated based on activities of catalase, alkaline phosphatase, acid phosphatase, dehydrogenase, and urease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call