Abstract

Extreme droughts and heat waves due to climate change may have permanent consequences on soil quality and functioning in agroecosystems. During November 2010 to August 2011, the Southern High Plains (SHP) region of Texas, U.S., a large cotton producing area, received only 39.6mm of precipitation (vs. the historical avg. of 373mm) and experienced the hottest summer since record keeping began in 1911. Several enzyme activities (EAs) important in biogeochemical cycling were evaluated in two soils (a loam and a sandy loam at 0–10cm) with a management history of monoculture (continuous cotton) or rotation (cotton and sorghum or millet). Samplings occurred under the most extreme drought and heat conditions (July 2011), after precipitation resulted in a reduction in a drought severity index (March 2012), and 12 months after the initial sampling (July 2012; loam only). Eight out of ten EAs, were significantly higher in July 2011 compared to March 2012 for some combinations of soil type and management history. Among these eight EAs, enzymes key to C (β-glucosidase, β-glucosaminidase) and P cycling (phosphodiesterase, acid and alkaline phosphatases) were significantly higher (19–79%) in July 2011 than in March 2012 for both management histories regardless of the soil type (P>0.05). When comparing all sampling times, the activities of alkaline phosphatase, aspartase and urease (rotation only) showed this trend: July 2011>March 2012>July 2012. Activities of phosphodiesterase, acid phosphatase, α-galactosidase, β-glucosidase and β-glucosaminidase were higher in July 2011 than July 2012 in at least one of the two management histories. Total C was reduced significantly from July 2011 to March 2012 in the rotation for both soils. Only the activities of arylsulfatase (avg. 36%) and asparaginase showed an increase from July 2011 to March 2012 for both soil types, which may indicate they have a different origin/location than the other enzymes. EAs continued to be a fingerprint of the soil management history (i.e., higher EAs in the rotation than in monoculture) during the drought/heat wave. This study provided some of the first evidence of the adverse effects of a natural, extreme drought and heat wave on soil quality in agroecosystems as indicated by EAs involved in biogeochemical cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.